TP53 mutations are universal across cancer types. The loss of a tumor suppressor is most often through large deleterious events, such as frameshift mutations, or premature stop codons. In TP53 however, many of the observed mutations in cancer are found to be single nucleotide missense variants. These variants are broadly distributed throughout the gene, but with the majority localizing in the DNA binding domain. There is no single hotspot in the DNA binding domain, but a majority of mutations occur in amino acid positions 175, 245, 248, 273, and 282 (NM_000546) (Olivier et al., 2010). While a large proportion of cancer genomics research is focused on somatic variants, TP53 is also of note in the germline. Germline TP53 mutations are the hallmark of Li-Fraumeni syndrome, and many (both germline and somatic) variants have been found to have a prognostic impact on patient outcomes. The significance of many polymorphisms for susceptibility and prognosis of disease is still very much up for debate.
Optimal working dilutions should be determined experimentally by the investigator. Suggested starting dilutions are as follows: wb dilution 1:1000.
p53 (Acetyl-K305) Polyclonal Antibody product listed herein is for research use only and is not intended for use in human or clinical diagnosis. Suggested applications of our products are not recommendations to use our products in violation of any patent or as a license. We cannot be responsible for patent infringements or other violations that may occur with the use of this product.
Find more details at https://www.abbkine.com/product/p53-(acetyl-k305)-polyclonal-antibody-abp59799/
bio-equip.cn